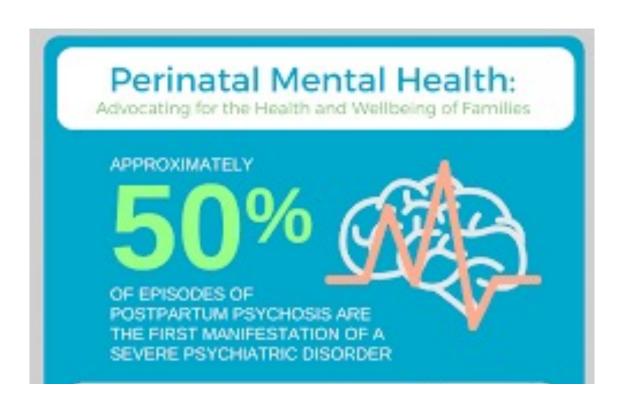
# Perinatal mental health during COVID-19 pandemic: A Nordic perspective



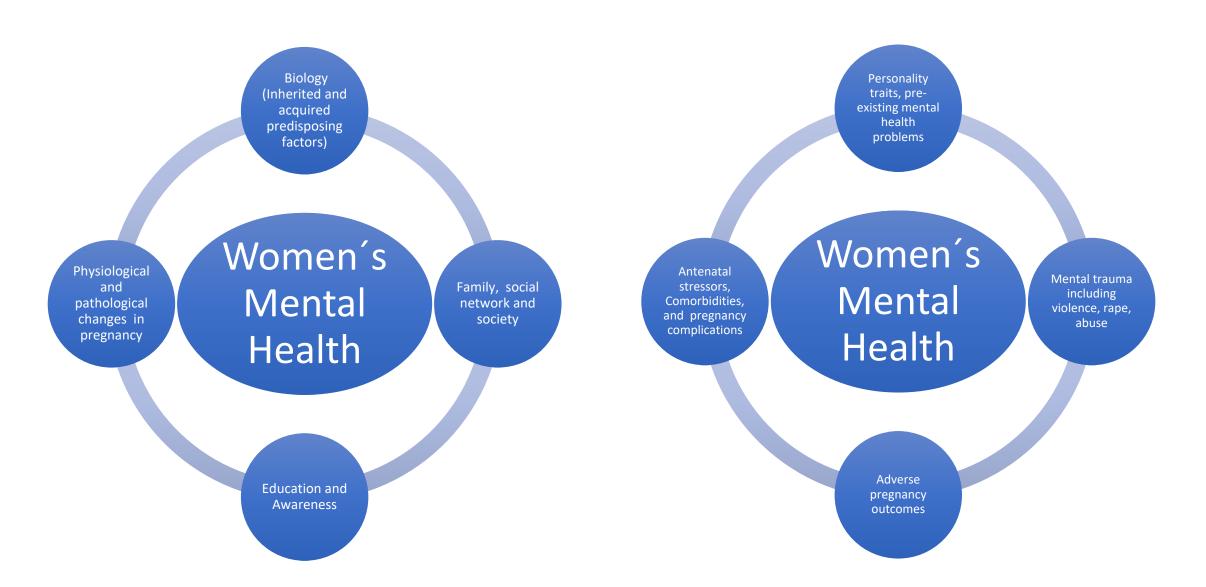







## I have no conflict of interest to declare

## Scope of the problem






© Royal College of Obstetricians and Gynaecologists 2017

### Perinatal Maternal Mental Health: Causes & Associations

The underlying biological mechanisms have not been fully understood



# Prevalence of perinatal mental ill-health is high but varies widely

Collins et al. Arch Womens Ment Health 2011;14:3-11.

| • | High income countries | 13% |
|---|-----------------------|-----|
|---|-----------------------|-----|

Low and middle-income countries (LMIC)
 20%

• Immigrants 42%

Systematic review of studies from LMIC \*

17% (major depressive disorder) 31% (any depressive disorder)

<sup>\*</sup> Fellmeth G, Fazel M, Plugge E. Migration and perinatal mental health in women from low- and middle-income countries: a systematic review and meta-analysis. BJOG 2017;124:742–75.

# Prevalence of antenatal depressive symptoms in non-pandemic period

| Author                   | Year | Country             | Measurement                   | Prevalence                                                         |
|--------------------------|------|---------------------|-------------------------------|--------------------------------------------------------------------|
| Gavin et al. (Review)[5] | 2005 | Developed countries | Structured clinical interview | 18% depressed mood, 13% DSM-IV major depressive episode            |
| Rubertsson et al.[8]     | 2005 | Sweden              | EPDS                          | 13.7% depressive symptoms                                          |
| Anderson et al.[9]       | 2006 | Sweden              | EPDS                          | 29.2% depressive symptoms                                          |
| Bowen et al.[3]          | 2006 | Canada              | EPDS                          | 27% depressive symptoms                                            |
| Kitamura et al.[6]       | 2006 | Japan               | Ad-hoc structured diagnostic  | 12% one or more DSM-III-R psychiatric disorders                    |
|                          |      |                     | interview                     |                                                                    |
| Rich-Edwards et al.[7]   | 2006 | United States       | EPDS                          | 9% depressive symptoms                                             |
| Van Bussel et al.[8]     | 2006 | Belgium             | GHQ-12                        | 21% and 25%, prevalence of CMDs before and during pregnancy        |
| Lee et al.[11]           | 2007 | Hong Kong           | HADS                          | 54% anxiety, 37% depressive symptoms                               |
| Woods et al.[10]         | 2010 | United States       | PPPSS                         | 84% antenatal stress                                               |
| Faisal-Cury et al.[13]   | 2007 | Brazil              | STAI and BDI                  | STAI-state anxiety=60%, trait anxiety=45%, depressive symptoms=20% |
| Bunevicius et al.[12]    | 2009 | Lithuania           | CIDI-SF                       | 6% depressive disorder (12-16 weeks), 4% in the 3rd trimester      |
| Gausia et al.[16]        | 2009 | Bangladesh          | EPDS                          | 33% depressive symptoms                                            |
| Karmaliani et al.[14]    | 2009 | Pakistan            | AKUADS                        | 18% anxiety/depressive symptoms (20-26 weeks)                      |
| Imran et al.[15]         | 2009 | Pakistan            | EPDS                          | 42.7% depressive symptoms                                          |

<sup>\*</sup>Developed countries are listed first and in chronological order

# Prevalence of postnatal depressive symptoms in non-pandemic period

| Author                                                                                                        | Year | Country   | Measurement | Prevalence                                                                 |
|---------------------------------------------------------------------------------------------------------------|------|-----------|-------------|----------------------------------------------------------------------------|
| Massoudi et al.[29]                                                                                           | 2007 | Sweden    | EPDS        | 12.5% and 8.3% depressive symptoms at 8 and 12 weeks, respectively, period |
|                                                                                                               |      |           |             | prevalence - 4.5%                                                          |
| Buist et al.[30]                                                                                              | 2008 | Australia | EPDS        | 7.5% depressive symptoms (6-8 weeks)                                       |
| Monti et al.[31]                                                                                              | 2008 | Italy     | EPDS        | 13.8% (1-3 months), 4.8% (9 and 18 months respectively), 23% at least once |
| Patel et al.[17]                                                                                              | 2002 | India     | EPDS        | 23% postnatal depression (6-8 weeks)                                       |
| Chandran et al.[40]                                                                                           | 2002 | India     | CIS-R       | 19.8% had depression (incidence=11%)                                       |
| Limlomwongse et al.[34]                                                                                       | 2005 | Thailand  | EPDS        | 16.8% depressive symptoms                                                  |
| Agoub et al.[39]                                                                                              | 2005 | Morocco   | EPDS/MINI   | 18.7% had depression diagnosis at 2 weeks, 6.9% at 6 weeks, 11.8% at       |
| - 10 To |      |           |             | 6 months, 5.6% at 9 months                                                 |
| Ho-Yen et al.[35]                                                                                             | 2006 | Nepal     | EPDS        | 4.9% depressive symptoms                                                   |
| Alami et al.[36]                                                                                              | 2006 | Morocco   | EPDS/MINI   | 17% depression                                                             |
| Edwards et al.[38]                                                                                            | 2006 | Indonesia | EPDS        | 22% depressive symptoms                                                    |
| Tannous et al.[37]                                                                                            | 2008 | Brazil    | EPDS        | 20.7% depressive symptoms (6-8 weeks)                                      |
| Klainin and Arthur (review)[32]                                                                               | 2009 | Asia      | -           | 3.5-63.3% depressive symptoms                                              |
| Sawyer et al. (review)[33]                                                                                    | 2010 | Africa    | -           | Depression – 18%, anxiety – 14%                                            |
| Savarimuthu et al.[41]                                                                                        | 2010 | India     | EPDS        | 26.3% had postpartum depression                                            |

<sup>\*</sup>Developed countries are listed first and in chronological order



POLICY & ETHICS | OPINION

## COVID Misinformation Is Killing People

This "infodemic" has to stop

By Amir Bagherpour, Ali Nouri on October 11, 2020

## Disparity Health Polices & Healthcare









Sport Fotball Nyheter Byløvene Navn i nyhetene Byhistorie

Bli abonnent!

#### NYHETER

### Fagfolk advarer: – Mange vordende og nybakte mødre har det veldig tøft nå

Henvendelsene til Landsforeningen 1001 dager – mental helse under graviditet og etter fødsel, har eksplodert som en følge av koronaepidemien.

02/04/2020 06:00– I februar hadde vi rundt 600 unike brukere på hjemmesiden vår. I mars økte dette tallet til nær 13.000, forteller Lena Yri



Engelsen, leder i «Landsforeningen 1001 dager».

#### EDITORIAL



### Severe maternal morbidity and mortality associated with COVID-19: The risk should not be downplayed

Magnus Westgren<sup>1</sup> | Karin Pettersson<sup>1,2</sup> | Henrik Hagberg<sup>3</sup> | Ganesh Acharya<sup>1,2,4</sup> (o

Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden

Correspondence: Ganech Acharya Email: ganech.acharya@kl.ze

Nordic countries have a long tradition of collecting health-related population data meticulously and reporting them transparently. Such data provide firm grounds for making good decisions and as a result the public health institutions in Scandinavia enjoy the trust of society. The COVID-19 pandemic has, however, resulted in a completely new situation, as we are now exploring in uncharted waters. Based on reports from China, <sup>1-3</sup> Italy, <sup>4</sup> USA<sup>5</sup> and perhaps with the good intention of reducing anxiety among this vulnerable population group, it has been widely publicized that pregnant women are not at increased risk of susceptibility, infectivity and severity of COVID-19 compared with the general population or non-pregnant women, although a systematic review of 108 cases of laboratory-confirmed pregnancies with COVID-19 has reported the possibility of increased risk of severe disease among pregnant women.<sup>6</sup>

Recently, the Public Health Agency of Sweden released a report on pregnant and early postpartum women diagnosed with COVID-19 who required intensive care during the period between 19 March and 20 April 2020 (reference number: 01907-2020). This report is based on rigorously collected surveillance data that were extracted from the Swedish National quality registry on Intensive Care (SIR), and a summary has been published in AOGS.7 A total of 53 women with COVID-19 between the ages of 20 and 45 years received intensive care. Of those women, 13 were or had recently been pregnant. Six of these 13 women required invasive mechanical ventilation. An analysis based on an estimate of the total number of pregnant and non-pregnant women in the population of Sweden revealed that the relative risk (RR) for pregnant and early postpartum women (<1 week) with COVID-19 to receive intensive care was 5.4 (95% confidence interval [CI] 2.89-10.08) and the RR to require invasive mechanical ventilation was 4.0 (95% CI 1.75-9.14) compared with non-pregnant women of similar age. This risk remained higher (RR 3.5, 95% Cl 1.86-6.52) even after accounting for 50% more

pregnancies in the denominator to include possible miscarriages and early intrauterine deaths. Although the results are based on a relatively small number of COVID-19 cases and details regarding comorbidities are lacking, the risk is significant enough not to be ignored.

Published case series from China have not reported any maternal deaths related to COVID-19.1-3 However, maternal mortalities associated with COVID-19 have been reported recently from several other countries in the mainstream news and social media (https://ripe-to-mato.org/2020/04/05/covid-19-in-pregnancy-news-reports/) as well as in the scientific literature.<sup>6,9</sup> The Public Health Agency of Sweden has also reported one maternal death, which was not included in the data analysis of pregnant women admitted to intensive care. Maternal deaths due to COVID-19 are happening not only in low-income countries with restricted resources and poorer healthcare systems.<sup>6,9</sup> but also in highly developed countries with excellent resources and healthcare facilities and traditionally very low maternal mortality ratios. Furthermore, it is very likely that maternal deaths are under-reported.

If and why pregnant women may be at risk of developing more severe disease has not been elucidated yet. Physiologically, one would expect pregnant women to be more vulnerable than non-pregnant women of reproductive age. Increased susceptibility to hypoxemia due to pregnancy-associated anatomical and physiological changes in the cardio-respiratory system leading to high oxygen demands, a hypercoagulable state increasing the risk of pulmonary microvascular thrombosis, and altered immune function causing unfavorable inflammatory response could all have an important role in the pathophysiology and impact the clinical course/outcome of COVID-19 in pregnant women.<sup>30-13</sup> However, it may also be possible that the highly adaptive immune system in pregnancy may be potentially advantageous in defending against the infection. Further studies are needed to explore these possibilities. DOI: 10.1111/sogr.15894

#### SPECIAL EDITORIAL



#### Maternal mental health in the time of the COVID-19 pandemic

Suraj B. Thapa<sup>1,2</sup> | Anustha Mainali<sup>3</sup> | Simone E. Schwank<sup>4</sup> | Ganesh Acharya<sup>4,5,6</sup> |

<sup>2</sup>Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway

Correspondence: Ganesh Acharya Email: ganesh.acharya@kl.ze

With the pandemic of Coronavirus disease-19 (COVID-19) spiraling out of control, the world is desperately frazzled at the moment. A few empirical studies related to this pandemic have reported higher prevalence of mental health problems among women compared to men.<sup>3</sup> In this context, pregnant women and new mothers could certainly be more vulnerable. Are there psychological repercussions of this outbreak on maternal health? Are perinatal maternal mental health disorders an inevitable burden of this pandemic? Could this be averted with a proactive, multidisciplinary, integrated health services approach targeting the vulnerable population of pregnant women?

Although pregnancy is commonly believed to be a joyous time for most women, some women experience a range of negative emotions during pregnancy leading to anxiety and depression. Maternal mental health problems are associated with short-term and long-term risks for the affected mothers' overall health and functioning, as well as their children's physical, cognitive and psychological development. Conditions such as extreme stress, emergency and conflict situations, and natural disasters can inflate the risks of perinatal mental health morbidity. Therefore, it is plausible that pregnant women are vulnerable to mental ill-health during the COVID-19 pandemic.

Several studies on COVID-19 and pregnancy have been published recently, but the impact of this pandemic on maternal mental health has not yet been properly evaluated. However, the importance of considering the possibility of increased risk to avoid adverse effects has been highlighted.<sup>3</sup> The risk may be related to concerns regarding the wellbeing of the unborn child, but aggravated by unintended consequences of preventive measures, such as quarantine, physical distancing, home isolation, remote consultations with healthcare professionals, and inability to obtain expected level of support and care prenatally as well as during the intrapartum and postnatal periods.

The World Health Organization and several professional societies of obstetricians and gynecologists have come up with guidelines in managing COVID-19 during pregnancy and delivery, but the recommendations vary due to lack of solid evidence.<sup>2</sup> Although initial data from China suggested no increased risk of infection and morbidity among pregnant women compared to the general population,<sup>3</sup> a different picture is emerging as the outbreak has escalated into a global pandemic. Pregnant women may be at risk of having more severe disease, preterm deliveries are more common, and maternal and meonatal mortalities have been reported.<sup>4,5</sup> Furthermore, risk of miscarriage associated with COVID-19 remains unclear although the presence of severe acute respiratory syndrome corona virus-2 (SARS-COV-2) in a second trimester placenta has been demonstrated.<sup>6</sup> These uncertainties are likely to add to psychological stress and may even lead to increased rates of pregnancy terminations.

As many hospitals have put restrictions on visits by partners and relatives to pregnant women admitted to hospitals for delivery, some women may choose to deliver at home. This could create a problem as availability of qualified birth attendants and midwives to support home deliveries is limited, even in affluent countries, and may lead to increased maternal and neonatal complications. Although transmission of SARS-COV-2 through breast milk is unlikely, to some infected women may choose not to breast-feed temporarily to avoid direct contact with the newborn and reduce the risk of neonatal infection. However, such practices and early cessation of breastfeeding may contribute to poor health among mothers and infants.

Strict public health measures directed towards mitigating the spread of disease are necessary, but known to have negative

© 2010 Nordic Pederation of Societies of Obstetrics and Gynecology

Acts Obstet Gynecol Scand, 2020;99:817-818. wileyon(inellorary.com/journal/egg: 817

<sup>&</sup>lt;sup>2</sup>Department of Women's Health, Karolinska University Hospital, Stockholm, Sweden

<sup>\*</sup>Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

<sup>\*</sup>Women's Health and Perinatology Research Group, Department of Clinical Medicine, UIT, The Arctic University of Norway, Tromsa, Norway

<sup>&</sup>lt;sup>2</sup>Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway

<sup>&</sup>lt;sup>3</sup>Department of Community of Medicine, Institute of Health and Society, University of Oslo, Oslo, Norway

Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Institutet, Stockholm, Sweden

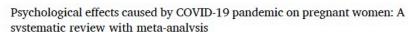
<sup>&</sup>lt;sup>5</sup>Center for Petal Medicine, Department of Obstatrics and Gynecology, Karolinska University Hospital, Stockholm, Sweden

Women's Health and Perinstology Recearch Group, Department of Clinical Medicine, UT-The Arctic University of Norway, Tromas, Norway

# Focus on maternal mental health during COVID-19 pandemic has been limited



| Country     | Considered as risk group or not                                  | Vaccination                                                                                                                                       |
|-------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Denmark     | Risk group (30)                                                  | No vaccine for pregnant women (30)                                                                                                                |
| Finland     | At higher risk for disease, but not defined as a risk group (31) | No general vaccination advice, individual recommendations. Pregnant women can get the vaccine, if in risk group or at high risk of infection (32) |
| Iceland     | Not a risk group (33)                                            | Vaccination for pregnant women (33)                                                                                                               |
| Norway      | Not a risk group (29)                                            | No general vaccination advice, individual recommendations. Pregnant women can get the vaccine (29)                                                |
| Sweden      | Risk group between gestational<br>week 20 and 36 (34)            | No general vaccination advice, individual recommendations. Pregnant women can get the vaccine (35)                                                |
| Switzerland | Risk group (36)                                                  | No general vaccination advice, individual recommendations. Pregnant women can get vaccine (37)                                                    |
| UK          | Moderate risk group (38)                                         | Vaccination for pregnant women (39)                                                                                                               |
| USA         | Risk group (40)                                                  | Vaccination for pregnant women (40)                                                                                                               |


Variation in pandemic mitigation measures among countries has been substantial

# Latest systematic review includes 24 studies (19 included in meta-analysis)

Summary of basic information of the studies included for meta-analysis based on the PRISMA method.

|                                    |                      | Strate              |                                             |                                                     | Results             |                  |  |
|------------------------------------|----------------------|---------------------|---------------------------------------------|-----------------------------------------------------|---------------------|------------------|--|
| Author and Year                    | Country              | Study<br>Population | Assessment                                  | Cut-off                                             | Depression %<br>(n) | Anxiety % (n)    |  |
| Sade et al. (2020)                 | Israel               | 84                  | EPDS                                        | EPDS≥10                                             | 25.0 %(21)          | N.A.             |  |
| Patabendige et al. (2020)          | Sri Lanka            | 257                 | HADS                                        | A total score of on the depression or<br>Anxiety ≥8 | 19.5%(50)           | 17.5 %(45)       |  |
| Yue et al. (2020)                  | China                | 308                 | SAS                                         | SAS > 50                                            | N.A.                | 14.3 %(44)       |  |
| Gu et al. (2020)                   | China                | 126                 | N.A.                                        | N.A.                                                | 38.1 %(48)          | 28.6 %(36)       |  |
| Liu et al. (2020)                  | China                | 1947                | SAS                                         | SAS≥50                                              | N.A.                | 17.2 %<br>(334)  |  |
| Durankuş and Aksu (2020)           | Turkey               | 260                 | EPDS                                        | EPDS > 13                                           | 35.4%(92)           | N.A.             |  |
| Lebel et al. (2020)                | Italy                | 1987                | EPDS                                        | EPDS≥13                                             | 37.0%(653)          | Unable to<br>get |  |
| Wu et al. (2020)                   | China                | 1285                | EPDS                                        | EPDS≥10                                             | 29.6%(381)          | N.A.             |  |
| Mappa et al. (2020)                | Italy                | 178                 | STAI                                        | STAI-S≥40                                           | N.A.                | 77.0 %<br>(137)  |  |
| Ceulemans et al. (2020)            | Belgium              | 2421                | EDS; GAD-7                                  | EDS≥13<br>GAD-7≥5                                   | 25.3 %(612)         | 53.0 % (1275)    |  |
| Parra-Saavedra et al. (2020)       | Colombia             | 941                 | self-created questionnaire                  | N.A.                                                | 25.0 %(235)         | 49.9 % (469)     |  |
| Suzuki (2020)                      | Japan                | 117                 | the tale of Whooley two<br>questions; GAD-2 | at least one of the two questions is<br>'yes'       | 29.9 %(35)          | 25.6 %(30)       |  |
| Matsushima and Horiguchi<br>(2020) | Japen                | 1777                | EPDS                                        | EPDS≥13                                             | 17.0%(302)          | N.A.             |  |
| Thayer and Gildner (2020)          | the United<br>States | 2099                | EPDS                                        | EPDS≥15                                             | 23.6%(496)          | N.A.             |  |
| Effati-Daryani et al. (2020)       | Iranian              | 205                 | DASS-21                                     | N.A.                                                | 32.7 %(67)          | 43.9 %(90)       |  |
| Silverman et al. (2020)            | the United<br>States | 485                 | DPDS                                        | EPDS≥9                                              | 15.1%(73)           | N.A.             |  |
| Zhou et al. (2020)                 | China                | 544                 | PHQ-9<br>GAD-7                              | PHQ > 10; GAD-7 ≥ 7                                 | 5.3 %(29)           | 6.8 %(37)        |  |
| Preis et al. (2020)                | the United<br>States | 788                 | GAD-7                                       | GAD-7 ≥ 5                                           | N.A.                | 78.8 %<br>(621)  |  |
| Ayaz et al. (2020)                 | Turkey               | 63                  | BAI                                         | BAI≥10                                              | N.A.                | 90.5 %(57)       |  |

EPDS: Edinburgh Postpartum Depression Scale; HADS: Hospital Anxiety and Depression Scale; SAS: Self-Rating Anxiety Scale; STAI: State-trait anxiety inventory; STAI-S: one separate sub-scales of STAI; PHQ-2: the Patient Health Questionnaire-2; GAD-7 and GAD-2: Generalized Anxiety Disorder 7-item Scale; DASS-21: Depression, Anxiety and Stress Scale-21; BAI: Beck Anxiety Inventory.





Si Fan a, Jianping Guan b, Li Cao b, Manli Wang b, Hua Zhao b, Lili Chen b, c, \*, Lei Yan a, b, \*

\* School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China

b The Eighth People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China

<sup>c</sup> Chen Lili's Clinic, Korla, Bayingolin Mongol Autonomous State, Xinjiang Uygur Autonomous Region, China

#### ARTICLEINFO

Keywords: COVID-19 Pregnant women Anxiety Depression Psychological intervention

#### ABSTRACT

Aim: This study aimed to investigate and monitor the mental health status of pregnant women during the COVID-19 pandemic.

Materials and methods: The meta-analysis was used to study the literatures on the psychology of pregnant women in four databases until Sep 27, 2020.

Results: A total of 19 articles were included in the final meta-analysis. The overall prevalence of anxiety was 42 % (95 %Cl 26 %-57 %) with substantial heterogeneity ( $l^2 = 99.6$  %). The overall prevalence of depression was 25 % (95 %Cl 20 %-31 %) with substantial heterogeneity ( $l^2 = 97.9$  %). Age, family economic status, social support, and physical activity seem to correlate with the mental health status of pregnant women.

Conclusion: The prevalence of anxiety and depression among pregnant women increased significantly during the COVID-19 epidemic. Pregnant women are more concerned about others than themselves during COVID-19, and younger pregnant women seem to be more prone to anxiety, while social support and physical activity can reduce the likelihood of anxiety and depression. It is necessary to take some psychological intervention measures for pregnant women to help them go through this special period safely and smoothly.

## A GOOD NORDIC INITIATIVE THAT FALLS SHORT OF MATERNAL MENTAL HEALTH PERPECTIVE



NFOG V Journal Congress Fund V Thesis Guidelines NFYOG

## Nordic research collaboration on COVID-19 in pregnancy

October 1, 2020

Lars Ladfors

General

Nordic research collaboration on COVID-19 in pregnancy

The Nordic Obstetric Surveillance Study (NOSS) group is currently running a prospective study including pregnant women with COVID-19 infection admitted to hospital. The aim is to assess the maternal and perinatal outcomes of infection during pregnancy, to guide clinical care and the health system response.

DOI: 10.1111/aogs.14160

#### ORIGINAL RESEARCH ARTICLE



## COVID-19 in pregnancy—characteristics and outcomes of pregnant women admitted to hospital because of SARS-CoV-2 infection in the Nordic countries

```
Hilde Engjom<sup>1,2*</sup> | Anna J.M. Aabakke<sup>3,4*</sup> | Kari Klungsøyr<sup>5,6</sup> | Teresia Svanvik<sup>7</sup> | Outi Äyräs<sup>8</sup> | Eva Jonasdottir<sup>9</sup> | Lars Thurn<sup>10</sup> | Elin Jones<sup>11</sup> | Karin Pettersson<sup>11</sup> | Lill T. Nyfløt<sup>12</sup> | Iqbal Al-Zirqi<sup>12</sup> | Siri Vangen<sup>12</sup> | Pétur B. Júlíusson<sup>1</sup> | Karin Källén<sup>13</sup> | Mika Gissler<sup>14</sup> | Lone Krebs<sup>4,15</sup>
```

<sup>&</sup>lt;sup>1</sup>Department of Health Registry Research and Development, Norwegian Institute of Public Health, Bergen, Norway

<sup>&</sup>lt;sup>2</sup>Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway

<sup>&</sup>lt;sup>3</sup>Department of Obstetrics and Gynecology, Copenhagen University Hospital - Holbæk, Holbæk, Denmark

<sup>&</sup>lt;sup>4</sup>Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark

<sup>&</sup>lt;sup>5</sup>Department of Global Public Health and Primary Care, University of Bergen, Norway

<sup>&</sup>lt;sup>6</sup>Division of Mental and Physical Health, Norwegian Institute of Public Health, Norway

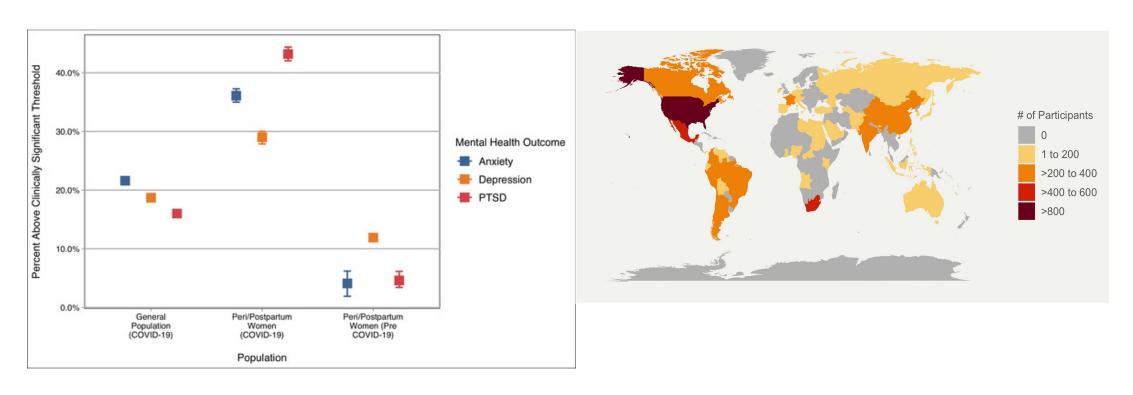
<sup>&</sup>lt;sup>7</sup>Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden

<sup>&</sup>lt;sup>8</sup>Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland

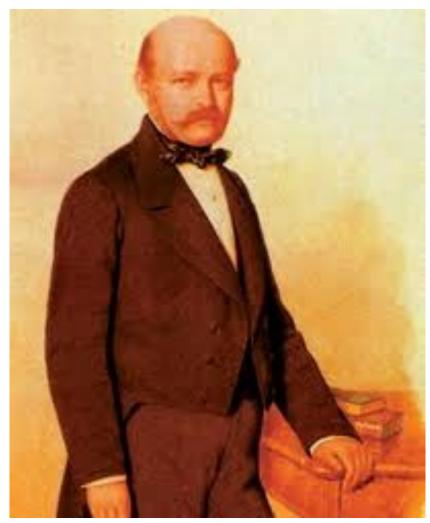
<sup>&</sup>lt;sup>9</sup>Department of Obstetrics and Gynecology, Landspitali University Hospital, Reykjavik, Iceland

<sup>&</sup>lt;sup>10</sup>Department of Obstetrics and Gynecology, Skåne University Hospital, Lund, Sweden

<sup>&</sup>lt;sup>11</sup>Department of Obstetrics and Gynecology, Karolinska University Hospital, Stockholm, Sweden


<sup>&</sup>lt;sup>12</sup>Norwegian Research Center for Womens' Health, Oslo University Hospital, Oslo, Norway

<sup>&</sup>lt;sup>13</sup>Institution of Clinical Sciences, Department of Obstetrics and Gynecology, Lund University, Lund, Sweden


<sup>&</sup>lt;sup>14</sup>The Finnish Institute of Health and Welfare, Helsinki, Finland

<sup>&</sup>lt;sup>15</sup>Department of Obstetrics and Gynecology, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark

Comparison of anxiety, depression and posttraumatic stress prevalence between the general population and peri/postpartum women during the COVID-19 pandemic, and peri/postpartum women prior to the pandemic (No participants from Nordic counties)



### Ignác Fülöp Semmelweis (1818–1865) Louis-Victor Marcé (1828-1864)



Die Ätiologie, der Begriff und die Prophylaxis des Kindbettfiebers (1861)



Treatise on insanity in pregnant, postpartum, and lactating women (1858)

#### **Original Article**

Dan Med J 2020;67(12):A06200449

## Pregnant women's concerns and antenatal care during COVID-19 lock-down of the Danish society

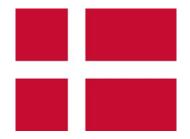
Gritt Overbeck<sup>1, 2</sup>, Anette Hauskov Graungaard<sup>1, 2</sup>, Ida Scheel Rasmussen<sup>1</sup>, Julie Høgsgaard Andersen<sup>2</sup>, Ruth Kirk Ertmann<sup>1</sup>, Jakob Kragstrup<sup>1</sup> & Philip Wilson<sup>1, 3</sup>

1) Section of General Practice, Department of Public Health, University of Copenhagen, 2) Research Unit for General Practice, Copenhagen, Denmark, 3) Centre for Rural Health, Institute of Applied Health Sciences, University of Aberdeen, Scotland

Dan Med J 2020;67(12):A06200449

#### **ABSTRACT**

**INTRODUCTION:** Pandemics are known to cause stress and anxiety in pregnant women. During the coronavirus disease 2019 (COVID-19) lockdown of the Danish society, pregnant women were considered to be at increased risk, and access to antenatal care changed.


METHODS: On 8 April 2020A, a questionnaire was sent to 332 pregnant women previously sampled by general practitioners in two Danish regions. The women were contacted via secured e-mail (e-Boks), and questionnaires were returned until 6 May.

RESULTS: The questionnaire was returned by 257 women (77%). More than half believed that they were at a high risk of infection with COVID-19, and a third of the women were concerned about the risk of serious disease – especially for their unborn child. Almost 90% isolated at home most of the time. The majority were worried about possible consequences of the pandemic for antenatal care, but very few had actually missed a scheduled preventive consultation with their general practitioner, and only 15% had missed an appointment with their midwife. The majority of the women preferred normal consultations and found no added safety in shifting the consultation from the normal clinical setting.

CONCLUSIONS: The COVID-19 pandemic and lockdown have had a major impact on Danish pregnant women. Even so, concerns were more focused on access to care than on the risk of COVID-19 infection. Contacts with the antenatal healthcare system have only been moderately affected.

FUNDING: TRYG Foundation and KEU, Region Copenhagen.

TRIAL REGISTRATION: not relevant.



### **DENMARK**

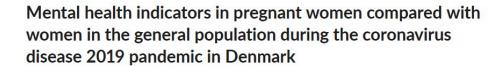
Scandinavian Fournal of Public Health, 2021; 49: 721-729



#### **ORIGINAL ARTICLE**

Depression and anxiety symptoms in pregnant women in Denmark during COVID-19

GRITT OVERBECK<sup>1</sup>, IDA SCHEEL RASMUSSEN<sup>1</sup>, VOLKERT SIERSMA<sup>1</sup>, JULIE HØGSGAARD ANDERSEN<sup>1</sup>, JAKOB KRAGSTRUP<sup>1</sup>, PHILIP WILSON<sup>1,2</sup>, ANETTE HAUSKOV GRAUNGAARD<sup>1</sup> & RUTH KIRK ERTMANN<sup>1</sup>


<sup>1</sup>The Research Unit for General Practice and Section of General Practice, Department of Public Health, University of Copenhagen, Denmark, and <sup>2</sup>Centre for Rural Health, Institute of Applied Health Sciences, University of Aberdeen, UK

#### Abstract

Aims: Maternal mental distress in pregnancy can be damaging to the mother's and child's physical and mental health. This study aimed to provide an insight into mental well-being of pregnant women in Denmark during COVID-19 by assessing symptoms of depression and anxiety. Methods: Data from two cohorts of pregnant women recruited from Danish general practice were compared. A COVID-19 lockdown cohort (N=330) completed questionnaires between 8 April and 6 May. Responses were compared to those from a control cohort of women from 2016 (N=1428). Mental well-being was measured with the Major Depression Inventory (MDI) and the Anxiety Symptom Scale (ASS). Results: Questionnaires were returned by 83% of the COVID-19 lockdown cohort and by 93% of the control cohort. Multivariable analysis controlling for age, cohabitation status, occupation, smoking, alcohol use, chronic disease, fertility treatment, parity and children living at home showed no difference in depressive symptoms (MDI). Anxiety symptoms (ASS) were slightly worse in the COVID-19 lockdown cohort (mean difference=1.4 points), mainly driven by questions concerning general anxiety. The largest differences in anxiety were seen in first trimester (adjusted mean difference=4.0 points). Conclusions: Pregnant women questioned during the COVID-19 pandemic showed no change in symptoms of depression and only a modest elevation of anxiety when compared to pregnant women questioned during a non-pandemic period in 2016.

Keywords: Anxiety, COVID-19 pandemic, depression, mental health, pregnancy, prenatal care

#### ORIGINAL RESEARCH ARTICLE



Elin R. Severinsen<sup>1,2</sup> | Lise K. A. Kähler<sup>1,3</sup> | Sofie E. Thomassen<sup>3</sup> | Tibor V. Varga<sup>2</sup> | Line Fich Olsen<sup>1</sup> | Kathrine V. R. Hviid<sup>1</sup> | Nina la Cour Freiesleben<sup>1,4,5</sup> | Naja H. Rod<sup>2</sup> | Henriette S. Nielsen<sup>1,4,5</sup>

<sup>1</sup>Department of Obstetrics and Gynecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark

<sup>2</sup>Section of Epidemiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

<sup>3</sup>Department of Obstetrics and Gynecology, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark

<sup>4</sup>Department of Obstetrics and Gynecology, The Fertility Clinic, Copenhagen University Hospital Hydovre, Hydovre, Denmark

<sup>5</sup>Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark

#### Correspondence

Elin Rosenbek Severinsen, Section of Epidemiology, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark. Email: elin.severinsen@sund.ku.dk

#### Funding information

HSN received a grant from the Danish Ministry of Research and Education for research of COVID-19 among pregnant women: 0237-00007B. HSN received a Ferring COVID-19 Investigational Grant for salary (LFO). The data collection for the 'Standing Together at a Distance' was funded by the Velux Foundation: 36336.

#### Abstract

Introduction: The coronavirus disease 2019 (COVID-19) pandemic and the associated regulations issued to minimize risk of disease transmission seem to have had an impact on general mental health in most populations, but it may have affected pregnant women even more because of pregnancy-related uncertainties, limited access to healthcare resources, and lack of social support. We aimed to compare the mental health response among pregnant women with that in similarly aged women from the general population during the first wave of the COVID-19 pandemic.

Material and methods: From April 14 to July 3, 2020, 647 pregnant women in their second trimester were enrolled in this study. For comparison, 858 women from the general Danish population (20–46 years) were sampled from an ongoing observational study. Participants responded to a questionnaire including six mental health indicators (concern level, perceived social isolation, quality of life, anxiety, mental health, and loneliness). Loneliness was measured using the UCLA Three-item Loneliness Scale and anxiety by the Common Mental Health Disorder Questionnaire 4-item Anxiety Subscale.

Results: The pregnant women had better scores during the entire study period for all mental health indicators, and except for concerns, social isolation, and mental health, the differences were also statistically significant. Pregnant women were more concerned about becoming seriously ill (40.2% vs. 29.5%, p < 0.001), whereas the general population was more concerned about economic consequences and prospects. Many pregnant women reported negative feelings associated with being pregnant during the COVID-19 pandemic and concerns regarding social isolation and regulation-imposed partner absence during hospital appointments and childbirth. All mental health indicators improved as Denmark began to reopen after the first wave of the pandemic.

Abbreviations: COVID-19, coronavirus disease 2019; QoL, quality of life; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2021 The Authors. Acta Obstetricia et Gynecologica Scandinavica published by John Wiley & Sons Ltd on behalf of Nordic Federation of Societies of Obstetrics and Gynecology (NFOG)

RESEARCH Open Access

# Concerns about transmission, changed services and place of birth in the early COVID-19 pandemic: a national survey among Danish pregnant women. The COVIDPregDK study



Katja Schrøder<sup>1,2\*</sup>, Lonny Stokholm<sup>3</sup>, Katrine Hass Rubin<sup>3</sup>, Jan Stener Jørgensen<sup>2</sup>, Ellen Aagaard Nohr<sup>2</sup>, Lone Kjeld Petersen<sup>2,3</sup> and Mette Bliddal<sup>3</sup>

#### Abstract

**Background:** The outbreak of the COVID-19 pandemic caused great uncertainty about causes, treatment and mortality of the new virus. Constant updates of recommendations and restrictions from national authorities may have caused great concern for pregnant women. Reports suggested an increased number of pregnant women choosing to give birth at home, some even unassisted ('freebirth') due to concerns of transmission in hospital or reduction in birthplace options. During April and May 2020, we aimed to investigate i) the level of concern about coronavirus transmission in Danish pregnant women, ii) the level of concern related to changes in maternity services due to the pandemic, and iii) implications for choice of place of birth.

Methods: We conducted a nationwide cross-sectional online survey study, inviting all registered pregnant women

**Results:** The response rate was 60% (n = 17,995). Concerns of transmission during pregnancy and birth were considerable; 63% worried about getting severely ill whilst pregnant, and 55% worried that virus would be transmitted to their child. Thirtyeight percent worried about contracting the virus at the hospital. The most predominant concern related to changes in maternity services during the pandemic was restrictions on partners' attendance at birth (81%). Especially nulliparous women were concerned about whether cancelled antenatal classes or fewer physical midwifery consultations would affect their ability to give birth or care for their child postpartum. The proportion of women who considered a home birth was equivalent to pre-pandemic home birth rates in Denmark (3%). During the temporary discontinue of public home birth services, 18% of this group considered a home birth assisted by a private midwife (n = 125), and 6% considered a home birth with no midwifery assistance at all (n = 41).

**Conclusion:** Danish pregnant womens' concerns about virus transmission to the unborn child and worries about contracting the virus during hospital appointments were considerable during the early pandemic. Home birth rates may not be affected by the pandemic, but restrictions in home birth services may impose decisions to freebirth for a small proportion of the population.

Keywords: COVID-19, Place of birth, Pregnancy, Pregnancy-related concerns, Survey study

Acta Obstet Gynecol Scand. 2021:00:1–10. wileyonlinelibrary.com/journal/aogs 1

#### ORIGINAL RESEARCH ARTICLE



## Mental health status of pregnant and breastfeeding women during the COVID-19 pandemic—A multinational cross-sectional study

Michael Ceulemans $^{1,2}$  | Veerle Foulon $^1$  | Elin Ngo $^3$  | Alice Panchaud $^{4,5}$  | Ursula Winterfeld $^6$  | Léo Pomar $^7$  | Valentine Lambelet $^7$  | Brian Cleary $^{8,9}$  | Fergal O'Shaughnessy $^{8,9}$  | Anneke Passier $^2$  | Jonathan L. Richardson $^{10}$  | Titia Hompes $^{11,12}$  | Hedvig Nordeng $^{3,13}$ 

#### Correspondence

Michael Ceulemans, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Campus Gasthuisberg, ON2, Herestraat 49 box 521, 3000 Leuven, Belgium. Email: michael.ceulemans@kuleuven.be

#### Funding information

The research activities of Michael Ceulemans were supported by the Fund Maurange managed by the Royal Baudouin Foundation. Hedvig Nordeng is supported by a European Research Council Starting Grant DrugsInPregnancy (grant number 639377). Elin Ngo is supported by Dam Foundation.

#### Abstract

Introduction: Evidence on perinatal mental health during the coronavirus disease 2019 (COVID-19) pandemic and its potential determinants is limited. Therefore, this multinational study aimed to assess the mental health status of pregnant and breastfeeding women during the pandemic, and to explore potential associations between depressive symptoms, anxiety, and stress and women's sociodemographic, health, and reproductive characteristics.

Material and methods: A cross-sectional, web-based study was performed in Ireland, Norway, Switzerland, the Netherlands, and the UK between 16 June and 14 July 2020. Pregnant and breastfeeding women up to 3 months postpartum who were older than 18 years of age were eligible. The online, anonymous survey was promoted

Abbreviations: CI, confidence interval; COVID-19, coronavirus disease 2019; EDS, Edinburgh Depression Scale; GAD-7, Generalized Anxiety Disorder seven-item scale; OR, odds ratio; PSS, Perceived Stress Scale; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in

Norway (31% of all participants)



COVID-19 pandemid

through social media and hospital websites. The Edinburgh Depression Scale (EDS), the Generalized Anxiety Disorder seven-item scale (GAD-7), and the Perceived Stress Scale (PSS) were used to assess mental health status. Regression model analysis was used to identify factors associated with poor mental health status.

Results: In total, 9041 women participated (including 3907 pregnant and 5134 breast-feeding women). The prevalence of major depressive symptoms (EDS  $\geq$  13) was 15% in the pregnancy cohort and and 13% the breastfeeding cohort. Moderate to severe generalized anxiety symptoms (GAD  $\geq$  10) were found among 11% and 10% of the pregnant and breastfeeding women. The mean ( $\pm$ SD) PSS scores for pregnant and breastfeeding women were 14.1  $\pm$  6.6 and 13.7  $\pm$  6.6, respectively. Risk factors associated with poor mental health included having a chronic mental illness, a chronic somatic illness in the postpartum period, smoking, having an unplanned pregnancy, professional status, and living in the UK or Ireland.

Conclusions: This multinational study found high levels of depressive symptoms and generalized anxiety among pregnant and breastfeeding women during the COVID-19 outbreak. The study findings underline the importance of monitoring perinatal mental health during pandemics and other societal crises to safeguard maternal and infant mental health.

#### KEYWORDS

anxiety, breastfeeding, coronavirus, COVID-19, depression, pregnancy, SARS-CoV-2, stress

TABLE 2 Mental health status of pregnant and breastfeeding women during the COVID-19 pandemic

|     |                       | Pregnant women |       |           | Breastfeeding women |       |              |
|-----|-----------------------|----------------|-------|-----------|---------------------|-------|--------------|
|     |                       | N              | %     | Mean (SD) | N                   | %     | Mean<br>(SD) |
| EDS | General               | 3545           | 100.0 | 7.1 (5.1) | 4542                | 100.0 | 7.4 (4.6)    |
|     | Score ≥10             | 1006           | 28.4  | N/A)      | 1287                | 28.3  | N/A          |
|     | Score ≥13             | 533            | 15.0  | N/A       | 592                 | 13.1  | N/A          |
|     | Country               |                |       |           |                     |       |              |
|     | United Kingdom (≥13)  | 48             | 42.1  | N/A       | 33                  | 42.3  | N/A          |
|     | Ireland (≥13)         | 158            | 26.3  | N/A       | 186                 | 24.3  | N/A          |
|     | Norway (≥13)          | 161            | 12.0  | N/A       | 217                 | 14.6  | N/A          |
|     | The Netherlands (≥13) | 115            | 11.5  | N/A       | 113                 | 9.1   | N/A          |
|     | Switzerland (≥13)     | 51             | 10.5  | N/A       | 102                 | 10.4  | N/A          |

Acta Obstet Gynecol Scand. 2021;00:1–11. wileyonlinelibrary.com/journal/aogs 1

<sup>&</sup>lt;sup>1</sup>Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium

<sup>&</sup>lt;sup>2</sup>Teratology Information Service, Pharmacovigilance Centre Lareb, 's-Hertogenbosch, the Netherlands

<sup>&</sup>lt;sup>3</sup>Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, PharmaTox Strategic Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway

<sup>&</sup>lt;sup>4</sup>Service of Pharmacy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland

Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland

<sup>&</sup>lt;sup>6</sup>Swiss Teratogen Information Service, Service de Pharmacologie Clinique, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland

<sup>&</sup>lt;sup>7</sup>Materno-Fetal and Obstetrics Research Unit, Lausanne University Hospital, Lausanne, Switzerland

<sup>&</sup>lt;sup>8</sup>Rotunda Hospital, Dublin, Ireland

<sup>&</sup>lt;sup>9</sup>School of Pharmacy, Royal College of Surgeons Ireland, Dublin, Ireland

<sup>10</sup> UK Teratology Information Service, Newcastle upon Tyne Hospitals NHS Foundation Trust and Public Health England, Newcastle upon Tyne, UK

<sup>&</sup>lt;sup>11</sup>Department of Neurosciences, KU Leuven, Leuven, Belgium

<sup>&</sup>lt;sup>12</sup>Adult Psychiatry, UPC KU Leuven, Leuven, Belgium

<sup>&</sup>lt;sup>13</sup>Department of Child Health and Development, Norwegian Institute of Public Health, Oslo, Norway

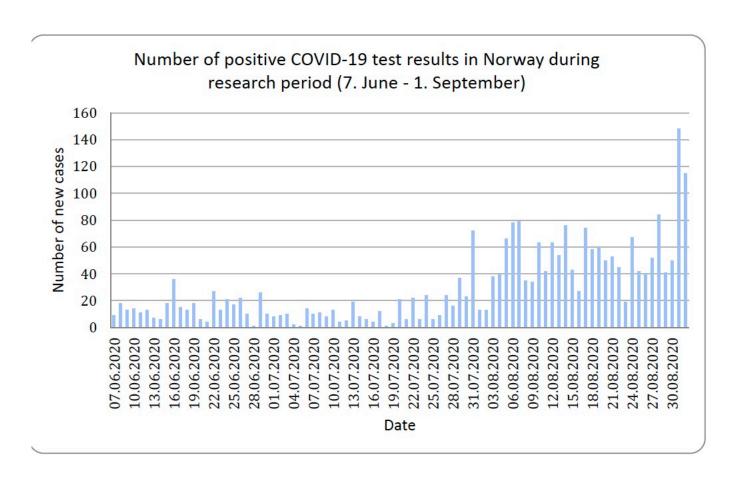
any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2021 The Authors. Acta Obstetricia et Gynecologica Scandinavica published by John Wiley & Sons Ltd on behalf of Nordic Federation of Societies of Obstetrics and Gynecology (NFOG).

# Impact of COVID-19 pandemic on maternal mental health: An observational study

Karine Stiberg Birkelund, Student Med.

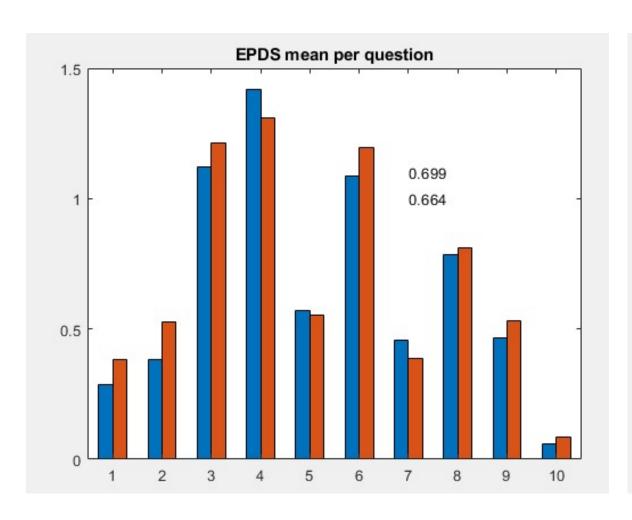
• Solrun Rassmusen, Student Med.

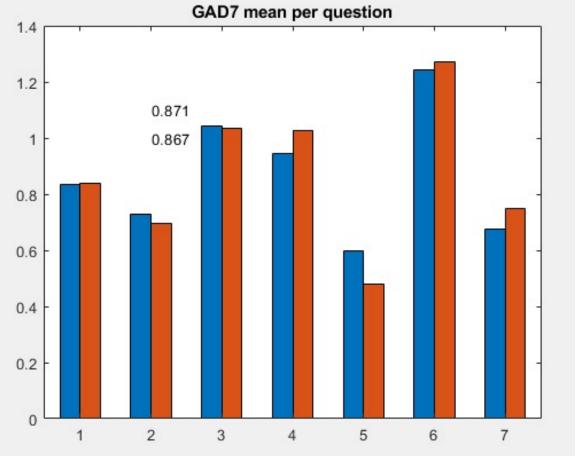

• Simone Schwank, Psychologist, Postdoctoral Fellow

• Ganesh Acharya, Obstetrician, Professor

## Our hypotheses

- COVID-19 pandemic has a negative impact on perinatal mental health of women.
- Common risk factors (e.g., low income, lower educational level, low social support, and comorbidities) will be associated with an increased risk of anxiety/depression during the COVID-19 pandemic.
- Personality has effect on perinatal mental health status and personality may change due to a significant life event (pregnancy and childbirth) during the pandemic.


## Study period




# RESULTS (Participated = 796; Included in analysis = 774)

- During pandemic 14.3%(n=111) had EPDS ≥13 and 24.9% (n=193) had ≥10
- Pre-pandemic EPDS  $\geq$ 13 = 8.1 % and EPDS  $\geq$ 10 =14.6% (Dørheim et al,2012 Nordeng et al,2012).
- 21.4 % (n=166) had GAD7 score ≥10
- 33 women had thoughts about self-harm
- Women worried more about their babies than themselves
- Tendency to isolate due to fear of infection
- Increased prevalence of anxiety/depression, especially among young women with low education and those working outside the healthcare sector.

## EPDS & GAD7 Scores Prenatal (blue) and Postnatal (red)





| Variable                              | Median (Range |
|---------------------------------------|---------------|
| Age (years)                           | 29 (19-44)    |
| Week of pregnancy                     | 26 (5-41)     |
|                                       | n (%)         |
| Minority*                             | 27 (3.5)      |
| Marital status                        |               |
| Married                               | 220 (28.4)    |
| Partner                               | 532 (68.7)    |
| Single                                | 19 (2.5)      |
| Other                                 | 3 (0.4)       |
| Parity                                |               |
| Nullipara                             | 414 (53.5)    |
| Multipara                             | 360 (46.5)    |
| Education                             |               |
| Compulsory (1st to 10th grade)        | 17 (2.2)      |
| High school**                         | 216 (27.9)    |
| University                            | 524 (67.7)    |
| Other                                 | 17 (2.2)      |
| Healthcare workers                    | 274 (35.4)    |
| Negative economic consequences due to | COVID-19      |
| Yes, for me                           | 89 (11.5)     |
| Yes, for partner                      | 96 (12.4)     |
| Yes, for both                         | 59 (7.6)      |
| No                                    | 530 (68.5)    |
| *4 missing values                     |               |

**Table 5:** Comparison of EPDS and GAD-7 groups according to background characteristics of study participants (n=774)

| Variables                      | EPDS<13<br>(n=663) | EPDS≥13<br>(n=111) |             | GAD7<10<br>(n=608) | GAD7≥10<br>(n=166) |         |
|--------------------------------|--------------------|--------------------|-------------|--------------------|--------------------|---------|
| variables                      |                    |                    |             |                    |                    |         |
| 0 ()                           | n (%)              | n (%)              | p-value     | n (%)              | n (%)              | p-value |
| Age (years)                    | 70 (40 0)          | 22 (40 0)          | 0.007       | 50 (0.5)           | 25 (24 7)          |         |
| Under 25                       | 72 (10.9)          | 22 (19.8)          | 0.007       | 58 (9.5)           | 36 (21.7)          | <0.001  |
| 25 to 29                       | 264 (39.8)         | 40 (36)            | 0.424       | 242 (39.8)         | 62 (37.3)          | 0.569   |
| 30 to 34                       | 231 (34.8)         | 34 (30.6)          | 0.368       | 215 (35.4)         | 50 (30.1)          | 0.201   |
| 35 or older                    | 96 (14.5)          | 15 (13.5)          | 0.764       | 93 (15.3)          | 18 (10.8)          | 0.147   |
| Minority*                      |                    |                    |             |                    |                    |         |
| Yes                            | 22 (3.3)           | 5 (4.5)            | 0.575       | 16 (2.6)           | 11 (6.7)           | 0.013   |
| No                             | 637 (96.7)         | 106 (95.5)         | 0.575       | 589 (97.4)         | 154 (93.3)         | 0.013   |
| Marital status**               |                    |                    |             |                    |                    |         |
| Married                        | 183 (27.7)         | 37 (33.3)          | 0.230       | 176 (29.1)         | 44 (26.5)          | 0.516   |
| Partner                        | 462 (70)           | 70 (63.1)          | 0.134       | 418 (69.1)         | 114 (68.7)         | 0.920   |
| Single                         | 15 (2.3)           | 4 (3.6)            | 0.424       | 11 (1.8)           | 8 (4.8)            | 0.027   |
| Parity                         |                    |                    |             |                    |                    |         |
| Nullipara                      | 355 (53.5)         | 59 (53.2)          | 0.939       | 311 (51.2)         | 103 (62)           | 0.013   |
| Multipara                      | 308 (46.5)         | 52 (46.8)          | 0.939       | 297 (48.8)         | 63 (38)            | 0.013   |
| Education                      |                    |                    |             |                    |                    |         |
| University                     | 453 (68.3)         | 71 (64)            | 0.368       | 431 (70.9)         | 93 (56)            | <0.001  |
| Other                          | 210 (31.7)         | 40 (36)            | 0.368       | 177 (29.1)         | 73 (44)            | <0.001  |
| Health care worker             |                    |                    |             |                    |                    |         |
| Yes                            | 242 (36.5)         | 32 (28.8)          | 0.110       | 231 (38)           | 43 (25.9)          | 0.004   |
| No                             | 421 (63.5)         | 79 (71.7)          | 0.110       | 377 (62)           | 123 (74.1)         | 0.004   |
| Negative economic consequences |                    |                    |             |                    |                    |         |
| Yes, for me                    | 70 (10.6)          | 19 (17.1)          | 0.046       | 56 (9.2)           | 33 (19.9)          | <0.001  |
| Yes, for partner               | 82 (12.4)          | 14 (12.6)          | 0.920       | 77 (12.7)          | 19 (11.4)          | 0.675   |
| Yes, for both                  | 41 (6.2)           | 18 (16.2)          | <0.001      | 36 (5.9)           | 23 (13.9)          | 0.001   |
| None                           | 470 (70.9)         | 60 (54.1)          | 0.001       | 439 (72.2)         | 91 (54.8)          | <0.001  |
| The percentages show           | n are within El    | PDS and GAD-       | 7 categorie | es .               |                    |         |
| The significant p-value        |                    |                    | -           |                    |                    |         |

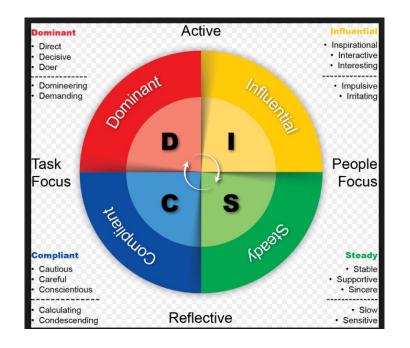
The significant p-values are shown in bold

<sup>\*</sup> Results shown from Fisher exact test and the minority variable has 4 missing values

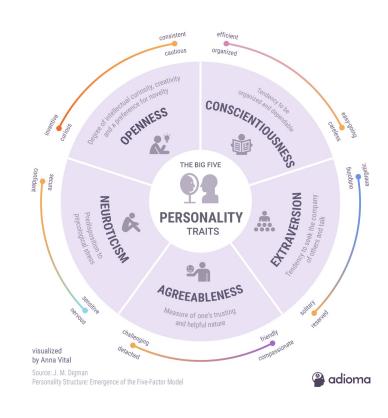
<sup>\*\*</sup> Other (n=3; 0.5%) is excluded from the analysis

## Comparison

Ceulemans M, et al. Mental health status of pregnant and breastfeeding women during the COVID-19 pandemic-A multinational cross-sectional study. Acta Obstet Gynecol Scand. 2021 Jul;100(7):1219-29.


9041 women participated in a multinational survey (3907 pregnant and 5134 breastfeeding women). Norway (31%) and the Netherlands (29%), Switzerland (19%), Ireland (18%), and the UK (3%)

12 % of women had EPDS  $\geq$  13 and GAD7  $\geq$  10 in prenatally and 11% postnatally (breast feeding women)




We performed a survey study in Sweden between May 2020 to February 2021 (Chung Ho-Fung, Ewa Andesson, Huan Hsuan-Ying, Ganesh Acharya and Simone E. Schwank)

Among a total of 522 participants, 42.5% (n=222) reported depression (EPDS ≥13), 25.3% (n=132) moderate to severe anxiety (GAD-7 score≥10), and 23.4% (n=122) moderate to severe acute stress reaction (IES-R ≥33).







## Does personality play a role?

# Personality trait and its association with anxiety/depression

From the perspective of the Big Five model, there is evidence that neuroticism is positively associated with generalized anxiety disorder (Bienvenu et al., 2001), whilst extroversion is associated negatively to anxiety disorders (Gomez & Francis, 2003). Openness and conscientiousness negatively associate with obsessive—compulsive disorder, and agreeableness also associates negatively with post-traumatic stress disorder (Chung, Berger, Jones, & Rudd, 2006).

Among the studies specific to PPD, neuroticism is the trait that associates positively most often, along with introversion (Jones et al., 2010; Saisto et al., 2001; Verkerk, Denollet, Van Heck, Van Son, & Pop, 2005).

Swedish study on personality traits and postpartum depression

Swedish Universities Scale of Personality and EPDS was used

Non-depressed pregnant women with high neuroticism had 4-fold increased risk of postpartum depression.

Somatic trait anxiety and psychic trait anxiety were associated with 2-fold increased risk of depression 6 months postpartum.

Studies during COVID-19 pandemic are lacking.

Arch Womens Ment Health (2015) 18:539–546 DOI 10.1007/s00737-014-0478-8

ORIGINAL ARTICLE

#### Personality and risk for postpartum depressive symptoms

S. I. Iliadis · P. Koulouris · M. Gingnell · S. M. Sylvén ·

- I. Sundström-Poromaa · L. Ekselius ·
- F. C. Papadopoulos · A. Skalkidou

Received: 14 June 2014 / Accepted: 18 October 2014 / Published online: 6 November 2014 © Springer-Verlag Wien 2014

Abstract Postpartum depression (PPD) is a common childbirth complication, affecting 10-15 % of newly delivered mothers. This study aims to assess the association between personality factors and PPD. All pregnant women during the period September 2009 to September 2010, undergoing a routine ultrasound at Uppsala University Hospital, were invited to participate in the BASIC study, a prospective study designed to investigate maternal well-being. Depressive symptoms were assessed with the Edinburgh Postnatal Depression Scale (EPDS) while the Depression Self-Rating Scale (DSRS) was used as a diagnostic tool for major depression. Personality traits were evaluated using the Swedish Universities Scale of Personality (SSP). One thousand thirtyseven non-depressed pregnant women were included in the study. Non-depressed women reporting high levels of neuroticism in late pregnancy were at high risk of developing postpartum depressive symptoms (PPDSs) at 6 weeks and 6 months after delivery, even after adjustment for confounders (adjusted odds ratio (aOR)=3.4, 95 % confidence interval (CI) 1.8-6.5 and adjusted odds ratio (aOR)=3.9, 95 % CI 1.9-7.9). The same was true for a DSRS-based diagnosis of major depression at 6 months postpartum. Somatic trait anxiety and psychic trait anxiety were associated with increased risk for PPDS at 6 weeks (aOR=2.1, 95 % CI 1.2-3.5 and aOR= 1.9, 95 % CI 1.1-3.1), while high scores of mistrust were associated with a twofold increased risk for PPDS at 6 months postpartum (aOR 1.9, 95 % CI 1.1-3.4). Non-depressed

S. I. Iliadis (☑) · M. Gingnell · S. M. Sylvén · I. Sundström-Poromaa · A. Skalkidou Department of Women's and Children's Health, Uppsala University, Uppsala University Hospital, 751 85 Uppsala, Sweden e-mail: starvosi, iliadis@gmail.com

P. Koulouris · L. Ekselius · F. C. Papadopoulos Department of Neuroscience, Psychiatry, Uppsala University, Uppsala University Hospital, 751 85 Uppsala, Sweden pregnant women with high neuroticism scores have an almost fourfold increased risk to develop depressive symptoms postpartum, and the association remains robust even after controlling for most known confounders. Clinically, this could be of importance for health care professionals working with pregnant and newly delivered women.

Keywords Personality · Neuroticism · Mistrust · Trait anxiety · Postpartum depression

#### Introduction

Postpartum depression (PPD) is defined as a major depressive episode with onset within 4 weeks after delivery (American Psychiatric Association 2000). However, this diagnostic window for PPD is considered too restrictive and it is generally extended in order to include the first 6 to 12 months postpartum (American Psychiatric Association 2013). The prevalence of PPD is consistently reported to vary around 10-15 % in most developed countries (Gaynes et al. 2005). Several major antenatal risk factors for the development of PPD have been identified, including previous history of depression, low social support, anxiety, depression, and stressful life events during pregnancy, history of premenstrual symptoms, and thyroid dysfunction (Gaynes et al. 2005; Robertson et al. 2004; Sylven et al. 2012, 2013). Despite the high prevalence of depression during the puerperium, it remains an underdiagnosed condition that can have a negative impact on the mother-infant attachment as well as the relationship between the mother and her partner (Beck 1995).

Several studies have established an association between personality factors and risk for depression in non-pregnant subjects. More specifically, neuroticism appears to be strongly associated with lifetime risk for major depression in adults (Berlanga et al. 1999; Erns and Cox 1997; Gershuny and Sher



## Personality traits and coping behavior during the COVID-19 pandemic: No studies among pregnant

Personality and Individual Differences 168 (2021) 110398



Contents lists available at ScienceDirect

#### Personality and Individual Differences

journal homepage: www.elsevier.com/locate/paid



The influence of demographics and personality on COVID-19 coping in young adults



Anthony A. Volk<sup>a,\*</sup>, Kristopher J. Brazil<sup>a</sup>, Prarthana Franklin-Luther<sup>a</sup>, Andrew V. Dane<sup>b</sup>, Tracy Vaillancourt<sup>c</sup>

- <sup>a</sup> Department of Child and Youth Studies, Brock University, St. Catharines, Ontario L2S 3A1, Canada
- <sup>b</sup> Department of Psychology, Brock University, St. Catharines, Ontario L2S 3A1, Canada
- <sup>c</sup> Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada

#### ARTICLE INFO

Keywords. COVID-19 Demographics Personality HEXACO Coping

#### ABSTRACT

The global COVID-19 pandemic has had an unprecedented effect on human behavior and well-being. Demographic factors and personality traits have been shown to independently influence whether individuals adopt adaptive or maladaptive coping responses. However, to date, researchers have not considered how demographics and personality could interact to influence COVID-19 coping responses. In a sample of 516 North American young adults, we found direct links from two demographic factors (i.e., income and having children) and from multiple personality traits (as captured by the HEXACO model) to adaptive and maladaptive COVID-19 coping responses. We also found that personality indirectly linked a broader range of demographic factors (income, age, gender, having children) with COVID-19 coping responses. We encourage future research on COVID-19 coping responses to consider not just the individual contributions of demographics and personality, but their interdependent influence on whether individuals adopt more or less adaptive COVID-19 pandemic coping responses.



DSychological Society 02020 The Authors British Journal of Health Psychology published by John Wiley & Sons Ltd

839

#### Brief report

Coronavirus (COVID-19) in the United Kingdom: A personality-based perspective on concerns and intention to self-isolate

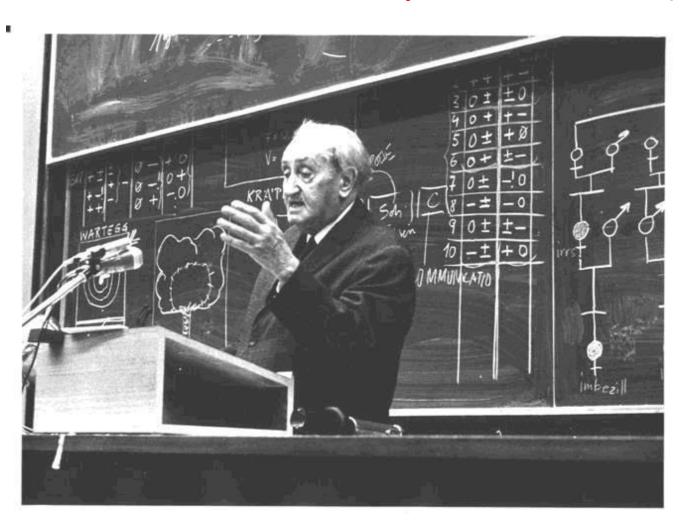
Alison M. Bacon 1 \* 10 and Philip J. Corr2

School of Psychology, University of Plymouth, UK

<sup>2</sup>Department of Psychology, City, University of London, UK

Objectives. Public behaviour change is necessary to contain the spread of coronavirus (COVID-19). Based on the reinforcement sensitivity theory (RST) framework, this study presents an examination of individual differences in some relevant psychological factors.

Design. Cross-sectional psychometric.


Methods. UK respondents (N = 202) completed a personality questionnaire (RST-PQ), measures of illness attitudes, concerns about the impact of coronavirus on health services and socio-economic infrastructures, personal safety, and likelihood of voluntary self-isolation.

Results. Respondents most concerned were older, had negative illness attitudes, and scored higher on reward reactivity (RR), indicating the motivation to take positive approach action despite prevailing worry/anxiety. Personal safety concerns were highest in those with negative illness attitudes and higher fight-fight-freeze system (FFFS, reflecting fear/avoidance) scores. Results suggest people are experiencing psychological conflict: between the urge to stay safe (FFFF-related) and the desire to maintain a normal, pleasurable (RR-related) life. Ways of ameliorating conflict may include maladaptive behaviours (panic buying), reflecting reward-related displacement activity. Intended selfisolation related to FFFS, but also low behavioural inhibition system (related to anxiety) scores. Older people reported themselves less likely to self-isolate.

Conclusions. Interventions need to consider individual differences in psychological factors in behaviour change, and we discuss relevant literature to inform policy makers

- Personal safety concerns are related to fight-fight-freeze system traits (FFFS, reflecting fear/
- Intended self-isolation related to FFFS, but also low behavioural inhibition system (related to anxiety) scores.

## Choice of method: Leopold Szondi (1893 – 1986)



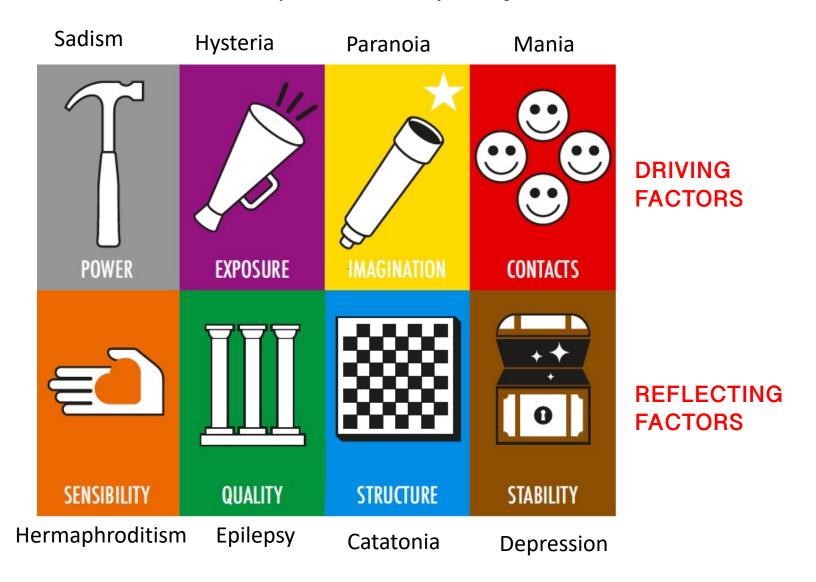
#### THE SEXUAL DRIVE

- h Hermaphroditism (bisexuality/homosexuality)
- s Sadism (Forceful control of others)

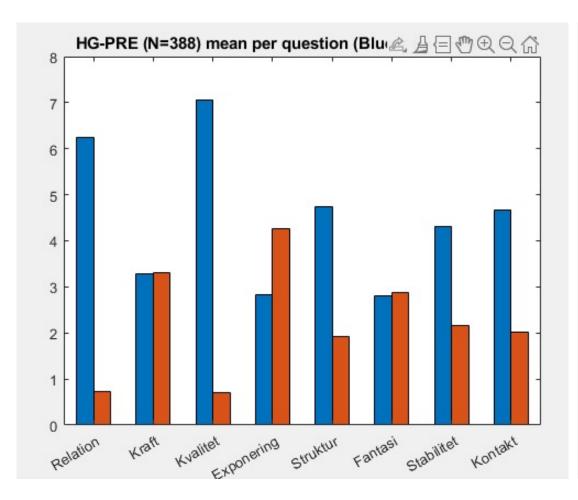
#### THE PAROXYSMAL DRIVE

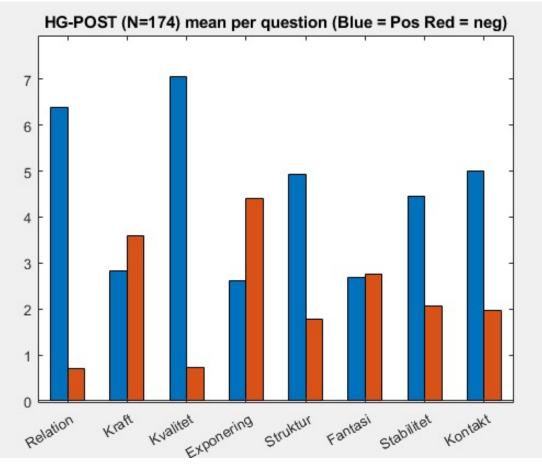
- e Epilepsy (strong emotional discharge)
- hy Hysteria (movement storm)

#### THE EGO DRIVE


- k Catatonia (self-withdrawal)
- Paranoia (loss of contact with reality)

#### THE CONTACT DRIVE


- d Depression (reduced psychic energy)
- m Mania (a lot of psychic energy)


## HumanGuide Test based on Szondi Theory

The test was provided by Rolf Kenmo



## Personality test done pre- or postnatally



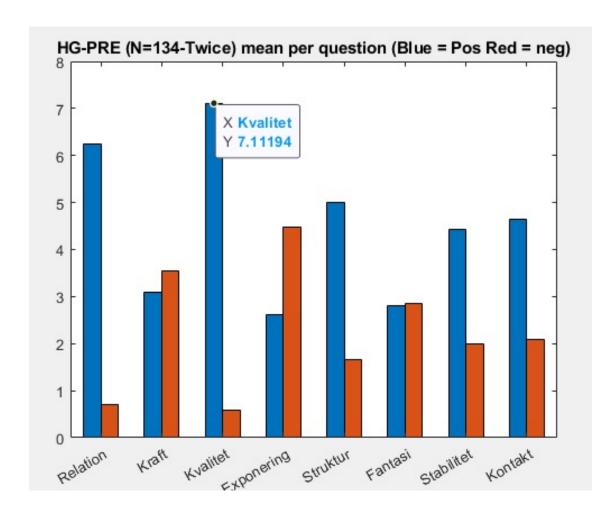


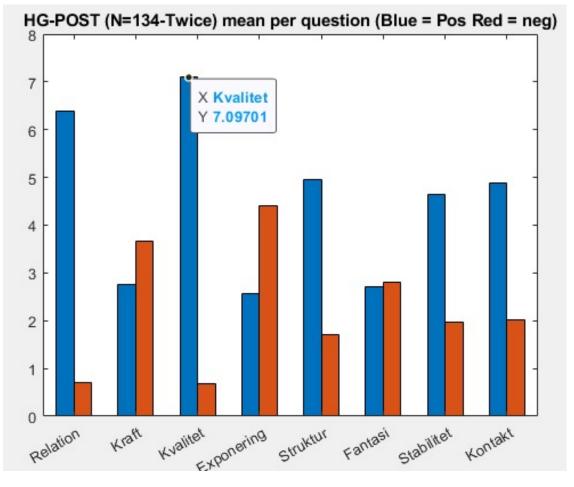
## Average woman working in healthcare





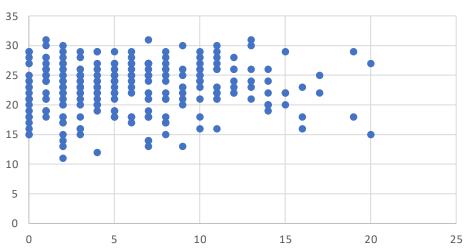




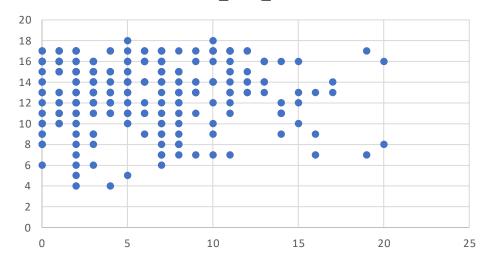





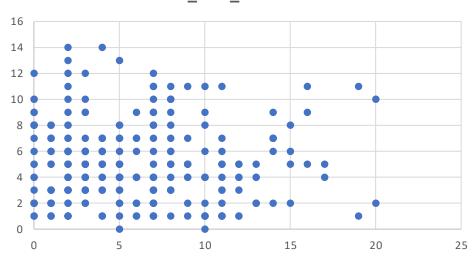




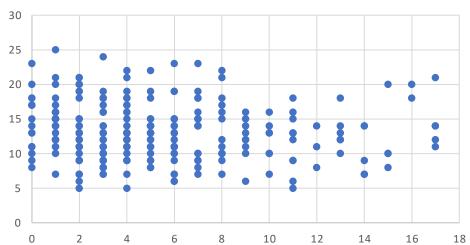



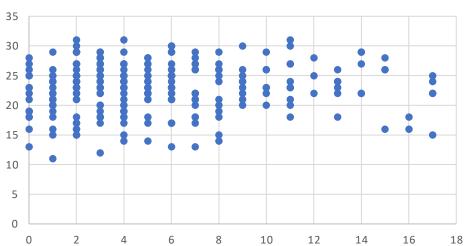

# SUM\_POS\_DRIVE EPDS 30 25 20 15 10 5 0 5 10 15 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25



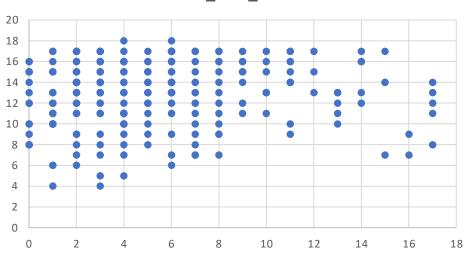




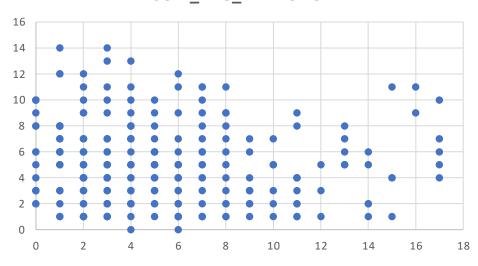



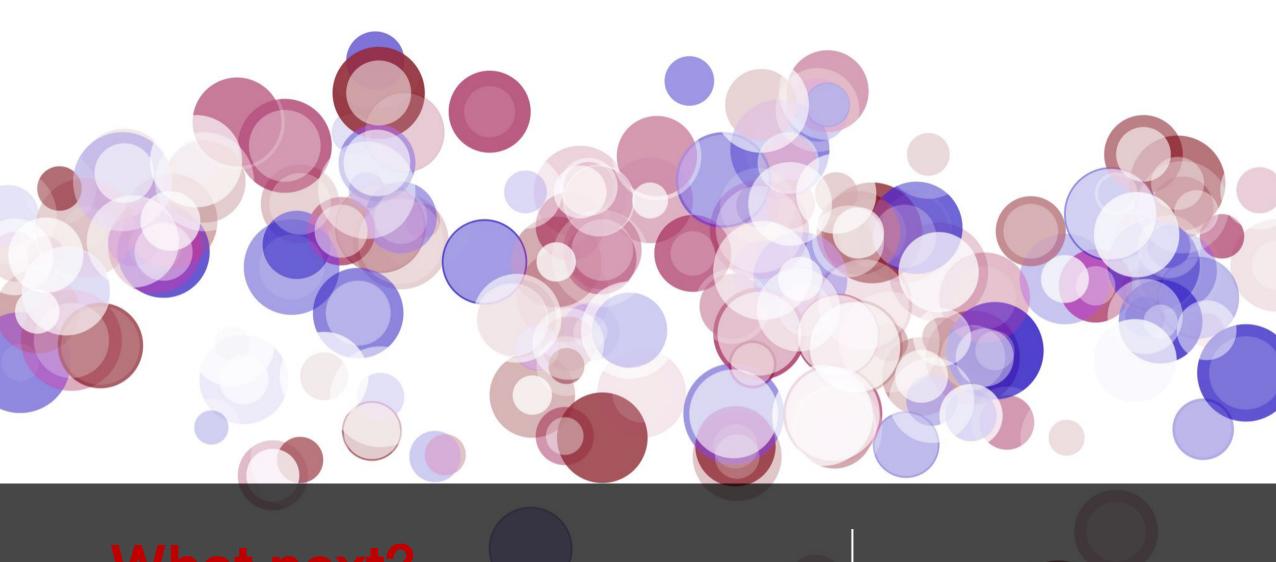


#### SUM\_NEG\_REFLECTION




### SUM\_POS\_DRIVE GAD7










#### SUM\_NEG\_REFLECTION





What next?

#### Recognize the risk and protective factors

| PNMDs | Risk factors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AND   | Previous PPD and nonperinatal depression <sup>75-77</sup> Recent adverse life events <sup>27,76,77,10,1,102,105,107,235-241</sup> Low socioeconomic status <sup>15,27,76,77,90,101,102,105,107,108,110-112,235-24</sup> Insufficient emotional/social support <sup>26,105</sup> Unplanned pregnancy <sup>76,77,79</sup> Unfavorable obstetric <sup>79</sup> /pregnancy outcomes <sup>242-244</sup> Chronic physical illness <sup>245</sup> Previous miscarriages <sup>246</sup> Domestic violence <sup>35</sup>                                                                                                                                                                                                                                                                                                                                                                 |
| PPD   | Past history of psychiatric disorders. 8.65.86 Depression/anxiety during current pregnancy. 87.88 Matemity blues. 94.8 Biological factors (genetic, hormonal, others). 80-84 Biological factors (genetic, hormonal, others). 80-84 Recent adverse life events. 97.76.77.10.102.105.107.235-241 Low socioeconomic status. 15.27.76.77.90.101.102.105.107.235-240 Insufficient emotional/social support. 15.113.101.102.105.107.235-240 Poor martial relationship. 101.102.105.107.235-240 Unplanned pregnancy. 15.113 Immigration/premigration stress. 248.249 Personality traits. 90.101.102 Unfavorable obstetric/pregnancy outcomes. 8.83.105 Unfavorable neonatal outcomes. 200.255 Unfavorable incontail outcomes. 200.255 Chronic/current physical illnesses 113.252 History of PMS. 255.256 Dimestic violence. 15.95-1.00 Childcare stress/infant temperament. 90.101.102 |
| PPs   | Previous episodes of PPs <sup>114</sup> Personal history of psychotic disorders and BPAD <sup>114</sup> Family history of PPs and BPAD <sup>114</sup> Insufficient emotional/social support <sup>115-117</sup> Sleep disturbance <sup>119</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PNADs | Personal history of ADS <sup>120,121</sup> Insufficient emotional/social support <sup>120,121</sup> Previous miscarriages <sup>246</sup> History of physical/sexual abuse <sup>120,121</sup> Multiple births <sup>121,205,256</sup> Unfavorable pregnancy <sup>243,244</sup> /neonatal <sup>250</sup> outcomes Matemity blues <sup>477</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PTSD  | Unfavorable obstetric/pregnancy and neonatal outcomes 123,124,251<br>Perinatal death 123,124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

"For antenatal common mental disorders include those with a history of depression, domestic violence, financial difficulties, spouse substance abuse and lack of social support".

Lydsdottir LB, Howard LM, Olafsdottir H, Einarsson H, Steingrimsdottir T, Sigurdsson JF. Adverse life experiences and common mental health problems in pregnancy: a causal pathway analysis. Arch Womens Ment Health. 2019 Feb;22(1):75-83. doi: 10.1007/s00737-018-0881-7.

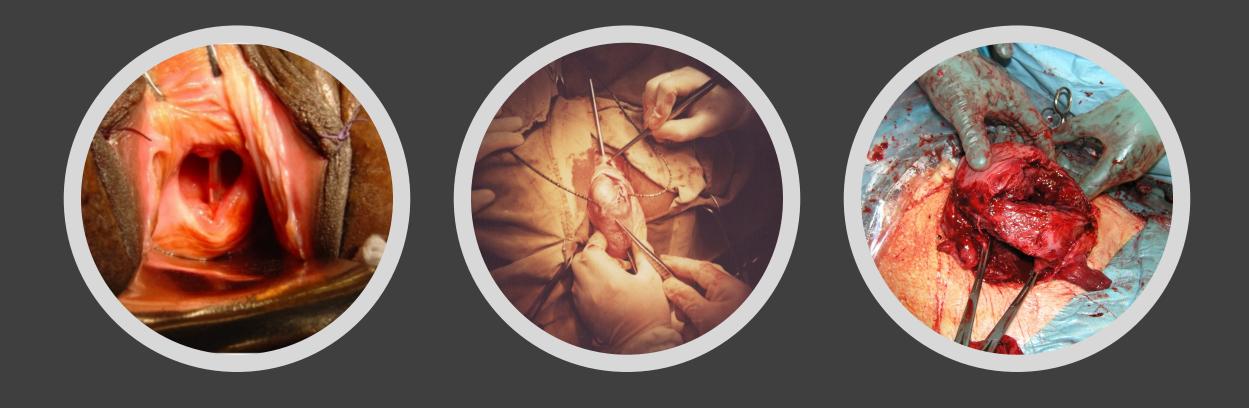
#### Risk factors of anxiety/depression during the pandemic

Table 3. Risk factors of depression and/or anxiety symptoms.

| Perinatal care                 | Uncertainty and concerns about perinatal care [26,35]<br>Alterations to prenatal appointments [53,54,57]<br>Discomfort with hospital and ambulatory visits [34]                                                                                                                                                                            |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Social factors                 | Social isolation [26] Lack of social support [31,35,42] Being single [36,42] Partner's absence at delivery [31] Tension/conflict at home [26,53]                                                                                                                                                                                           |
| Demographic                    | Being a woman of color [36,54] Being an Arab woman [48] Education level (high—[49], low—[34,53]) Younger age [36,42]                                                                                                                                                                                                                       |
| Financial                      | Low income, financial difficulties [25,42]<br>COVID-19-related financial stress and income loss [45,54]<br>Unemployment [34,42]                                                                                                                                                                                                            |
| Factors concerning<br>COVID-19 | Stress of getting infected with COVID-19 [26,35,42,48,52,53] Suffering subjective symptoms of suspected infection [46] Perceived risk of having had COVID-19 [54] Having infected friends/families/colleagues [57] Self or family member being an essential worker [53] Living in a location with a large number of COVID-19 cases [46,53] |
| Health state                   | High-risk pregnancy [48,52,54] Chronic illness [54] Previous psychiatric diagnosis [25,31] Previous adverse experiences during pregnancy [57]                                                                                                                                                                                              |
| Insufficient information       | No information about the effects of COVID-19 [34]<br>Inconsistent messaging from information sources [35]                                                                                                                                                                                                                                  |

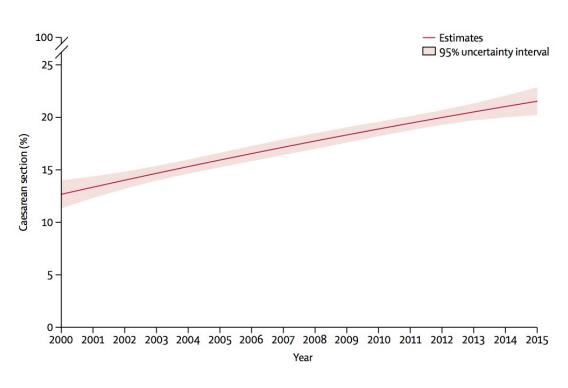
PROTECTIVE FACTORS against perinatal anxiety/depression during the COVID-19 Pandemic

Table 4. Protective factors.


| Social                    | Social support [26,47,48] Partner emotional support [35] Low hostility level in close relationships [36] Use of virtual communication platforms [35]                     |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COVID-related information | Information from healthcare workers and televised pandemic-related information [37] More knowledge about COVID-19 [46] Rational perception of COVID-related risk [46,47] |
| Activity                  | Physical activity [26,34] Access to outdoor space [35,54] Engagement in various healthy behaviors [35,54]                                                                |
| Personal                  | More self-reliance [36] Better emotion regulation [36] Positive attitudes towards online medical consultation [46]                                                       |

Review

#### Perinatal Mental Health during COVID-19 Pandemic: An Integrative Review and Implications for Clinical Practice


Julia Suwalska <sup>1,\*</sup>, Maria Napierała <sup>2</sup>, Paweł Bogdański <sup>1</sup>, Dorota Łojko <sup>2</sup>, Katarzyna Wszołek <sup>3</sup>, Sara Suchowiak <sup>2</sup> and Aleksandra Suwalska <sup>2</sup>

J. Clin. Med. 2021, 10, 2406



Risk of perinatal mental health disorders among women with comorbidities is important to consider

## Rise of cesarean section rates globally is obvious (see graph below), but only 3 percent of women elect to have CS because they are afraid of vaginal birth



- Nordic data show an increase in CS rate during the pandemic (41.7 vs 17.3%, p < 0.001) compared to 2018
- Risk of admission rates due to COVID-19 was low 0.4/1000 deliveries)
- 21.4% (12/56) needed ICU

Engjom H, Aabakke AJM, Klungsøyr K, et al. COVID-19 in pregnancy-characteristics and outcomes of pregnant women admitted to hospital because of SARS-CoV-2 infection in the Nordic countries. *Acta Obstet Gynecol Scand*. 2021;100(9):1611-1619.

#### How can we help our patients?



Provide support and manage them with empathy & care

#### PROMOTE SELF-CARE & DIGITAL SERVICES





and community

Dealing with fear: Subconsciously (fight-flight-freeze) vs. Consciously (face the situation, accept challenges, learn to cope and have patience to allow time for natural healing process)





Thank you for listening